

Correlation & Bias in γ -jet balance a talk for the mathematically inclined

Georgios Choudalakis, Eric Feng University of Chicago

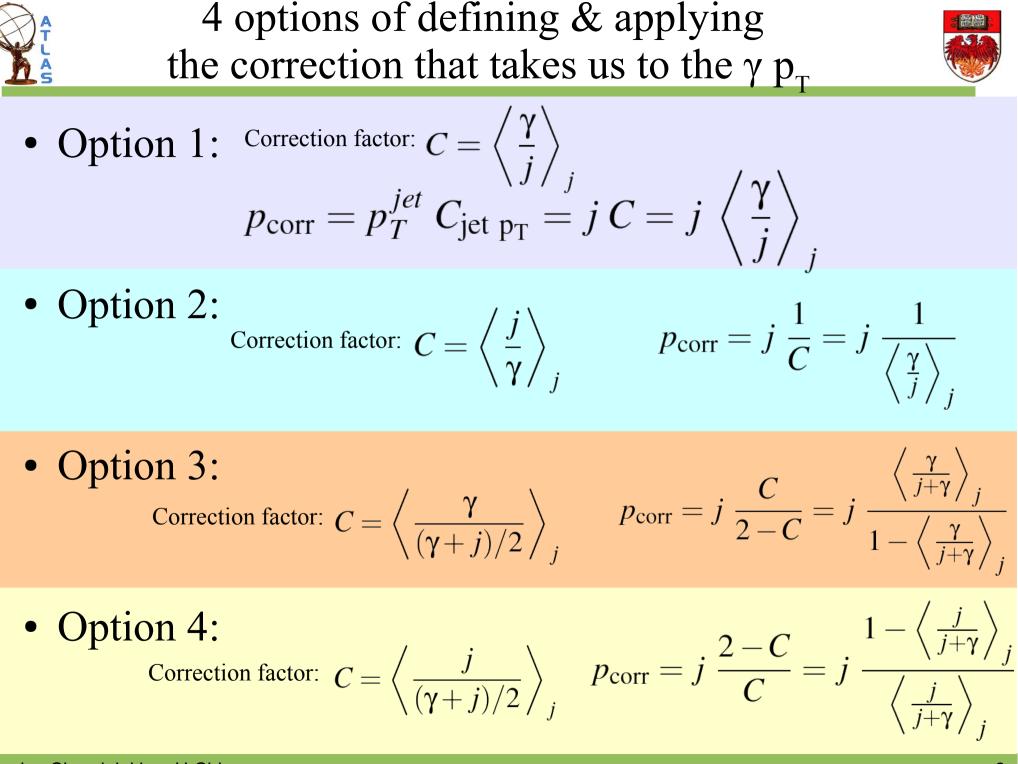
weekly group meeting 2009/05/11

In derivations,

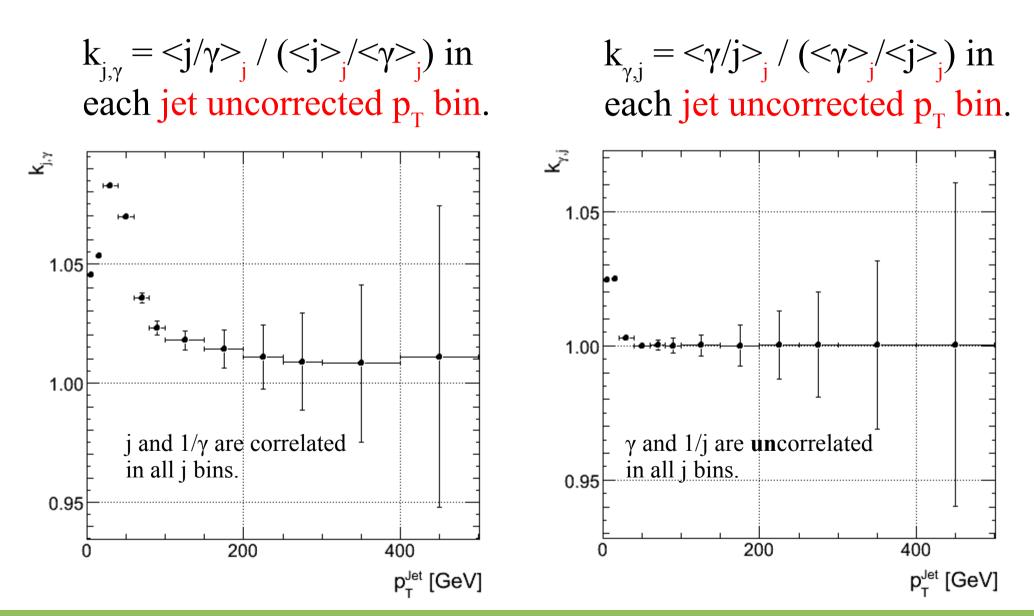
- γ is a short-hand for reconstructed photon p_T ,
- *j* is a short-hand for uncorrected jet p_T ,
- p_{corr} is the jet p_T after the correction. Since we try to adjust the jet to balance the photon, p_{corr} is an estimator for photon's p_T , which uses as observable the uncorrected jet p_T .
- The notation $\langle ... \rangle_{i}$ signifies averaging over all events in a given *j*-bin.

Definition of bias:

$$\hat{\theta}$$
 is a biased estimator of θ if $E(\hat{\theta} - \theta) \neq 0$.
Definition of $k_{a,b}^{j}$:
 $\left\langle \frac{a}{b} \right\rangle_{j} \equiv k_{a,b}^{j} \frac{\langle a \rangle_{j}}{\langle b \rangle_{j}} \Rightarrow k_{a,b}^{j} = 1 + \operatorname{cov}(a, \frac{1}{b})_{j} \frac{\langle b \rangle_{j}}{\langle a \rangle_{j}}$



Correlations (using MC, but these are observable in data too)



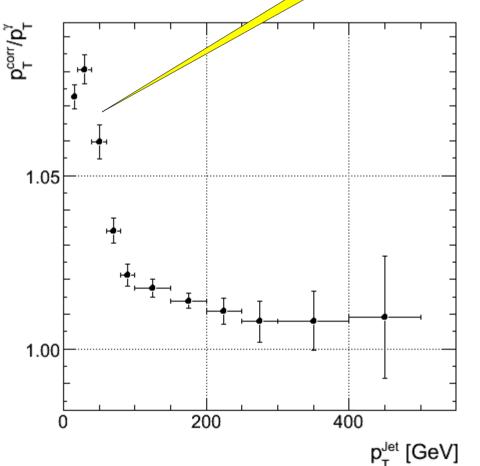
Correction factor: $C = \left\langle \frac{\gamma}{i} \right\rangle$ $\langle p_{\text{corr}} \rangle_j = \langle jC \rangle_j = \left\langle j \left\langle \frac{\gamma}{j} \right\rangle_i \right\rangle_j = \left\langle \frac{\gamma}{j} \right\rangle_j \langle j \rangle_j = k_{\gamma,j}^j \frac{\langle \gamma \rangle_j}{\langle j \rangle_j} \langle j \rangle_j = k_{\gamma,j}^j \langle \gamma \rangle_j$ If γ and j are uncorrelated, then k=1 and $\langle p_{corr} \rangle_j = \langle \gamma \rangle_j$. In that case p_{corr} is an unbiased estimator of the γp_T , since $\beta_j = 1.02$ $<\mathbf{p}_{corr} - \gamma > = <\gamma > - <\gamma > = 0.$ But, correlation between γ and j p_T causes the estimator to be biased: $\langle p_{corr} \rangle / \langle \gamma \rangle = k_{\gamma_i}$. 1.00 $k_{v_i} \approx 1$, so the bias is tiny, even if we do nothing to correct it. But in general we can correct it by redefining C: $C = \left\langle \frac{\gamma}{j} \right\rangle_{j} \to C' = \frac{C}{k_{\gamma,j}^{j}} = \frac{\left\langle \overline{j} \right\rangle_{j}}{\left\langle \frac{\gamma}{j} \right\rangle_{j}} = \frac{\left\langle \gamma \right\rangle_{j}}{\left\langle j \right\rangle_{j}}$ 0.98 200 400 We'll come back to this later p_T^{Jet} [GeV]

Option 1 (continued)

$$\left\langle \frac{\mathbf{p}_{\text{corr}}}{\mathbf{\gamma}} \right\rangle_{j} = \left\langle \frac{jC}{\mathbf{\gamma}} \right\rangle_{j} = \left\langle \frac{j\left\langle \frac{\gamma}{j} \right\rangle_{j}}{\mathbf{\gamma}} \right\rangle_{j} = \left\langle \frac{\gamma}{j} \right\rangle_{j} \left\langle \frac{j}{\mathbf{\gamma}} \right\rangle_{j} = k_{\gamma,j}^{j} \frac{\langle \gamma \rangle_{j}}{\langle j \rangle_{j}} k_{j,\gamma}^{j} \frac{\langle j \rangle_{j}}{\langle \gamma \rangle_{j}} = k_{\gamma,j}^{j} \cdot k_{j,\gamma}^{j} \cdot k_{j,\gamma}^{j}$$

Before thinking carefully, I thought it would be enough to show $\langle p_{corr} / \gamma \rangle$. I was hoping that if that were = 1, then I would have shown my estimator is unbiased. WRONG! This is not the same as $\langle p_{corr} \rangle / \langle \gamma \rangle$, which is the actual definition of bias.

$$< p_{corr}/\gamma >$$
 will be $\neq 1$, even if $< p_{corr} > = <\gamma >$.
Since $k_{\gamma,j} \approx 1$, $< p_{corr}/\gamma > \approx 1 \times k_{j,\gamma}$.



Correction factor:
$$C = \left\langle \frac{j}{\gamma} \right\rangle_{j}$$

 $\langle p_{\text{corr}} \rangle_{j} = \langle j/C \rangle_{j} = \left\langle \frac{j}{\left\langle \frac{j}{\gamma} \right\rangle_{j}} \right\rangle_{j} = \frac{\langle j \rangle_{j}}{\left\langle \frac{j}{\gamma} \right\rangle_{j}} = \frac{\langle j \rangle_{j}}{k_{j,\gamma}^{j} \langle \gamma \rangle_{j}} = \left[\frac{\langle \gamma \rangle_{j}}{k_{j,\gamma}^{j} \langle \gamma \rangle_{j}} \right]$

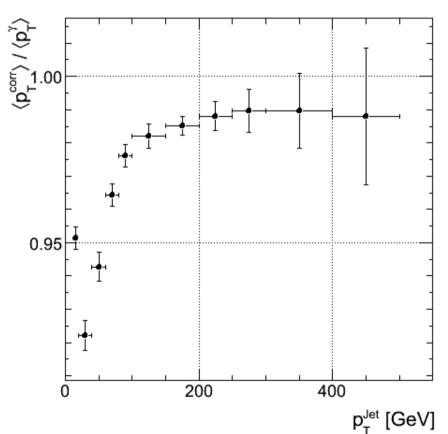
There is bias.

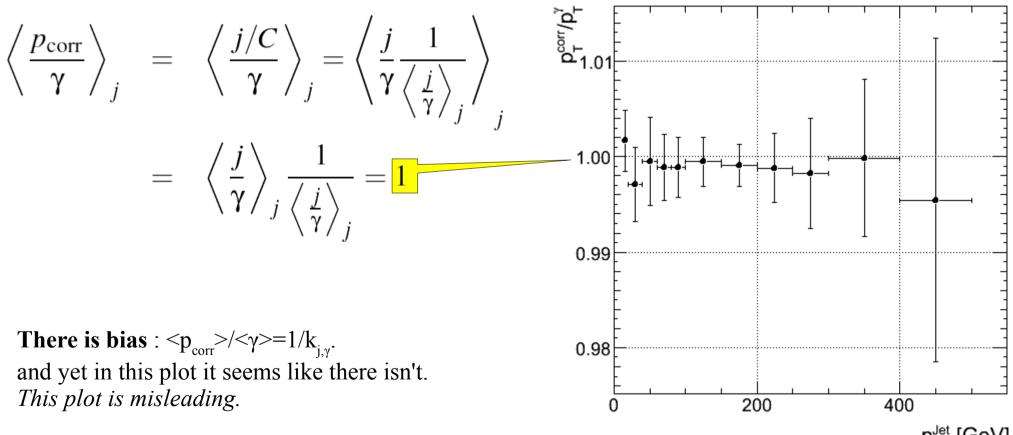
Unlike Option 1, with Option 2 the bias is large.

Moral: Option 2 and Option 1 are not equivalent. *Correlation beats intuition.*

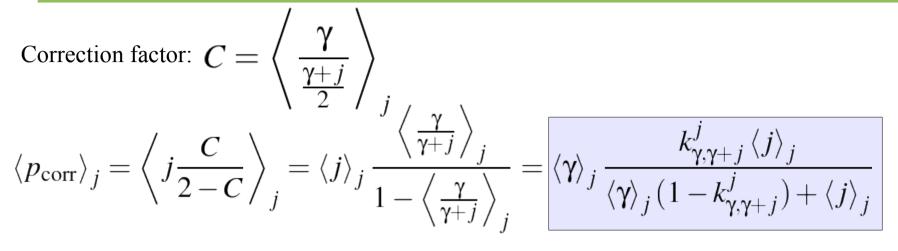
The bias could be corrected by a redefinition of C:

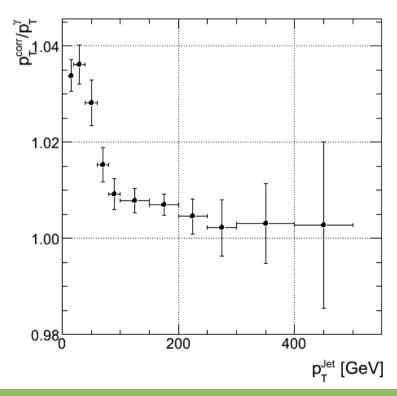
$$C = \left\langle \frac{j}{\gamma} \right\rangle_{j} \rightarrow C' = \frac{C}{k_{j,\gamma}^{j}} = \frac{\left\langle \frac{j}{\gamma} \right\rangle_{j}}{\left\langle \frac{j}{\gamma} \right\rangle_{j}} = \frac{\langle j \rangle_{j}}{\langle \gamma \rangle_{j}}$$
We'll come back to this later

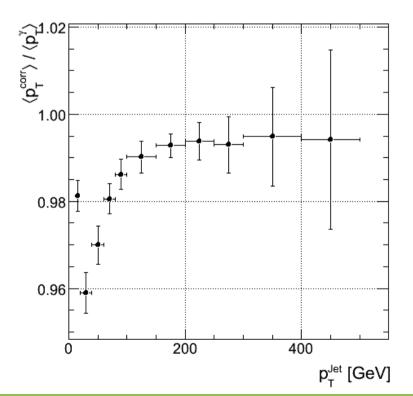




p_T^{Jet} [GeV]

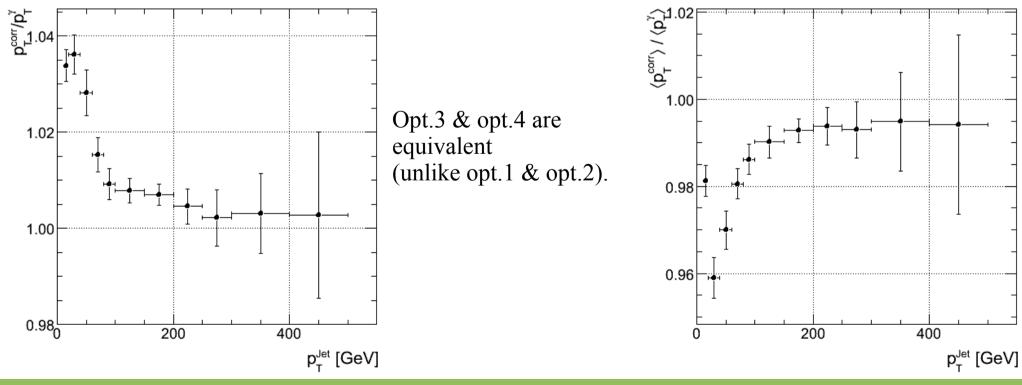


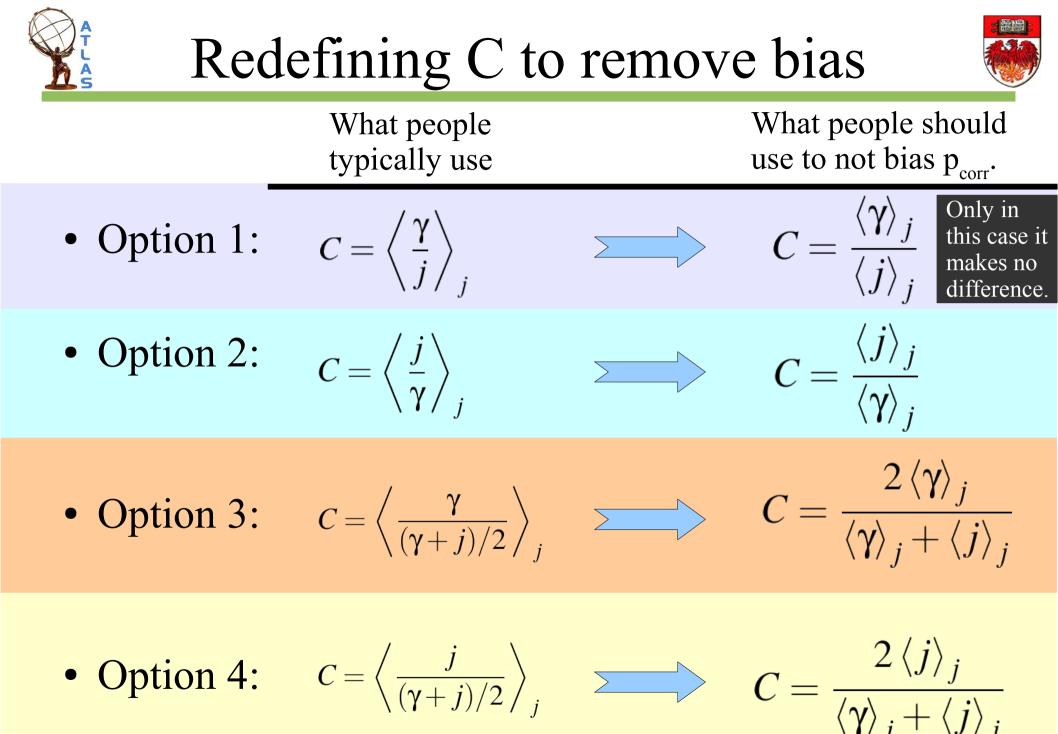


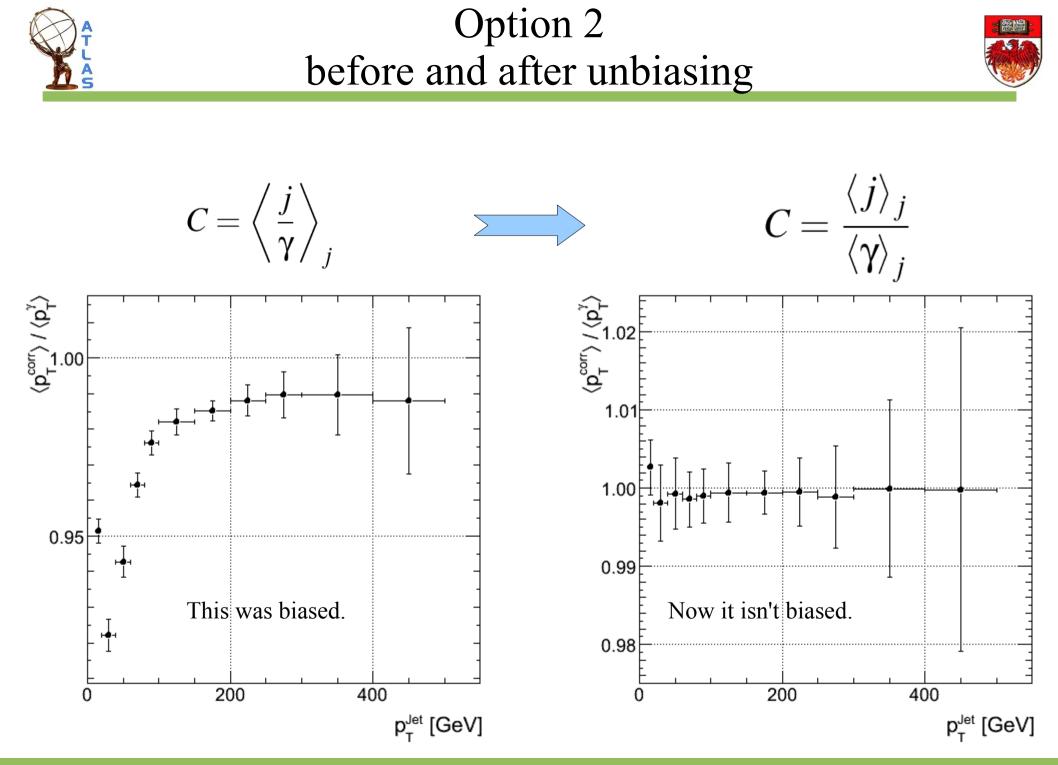


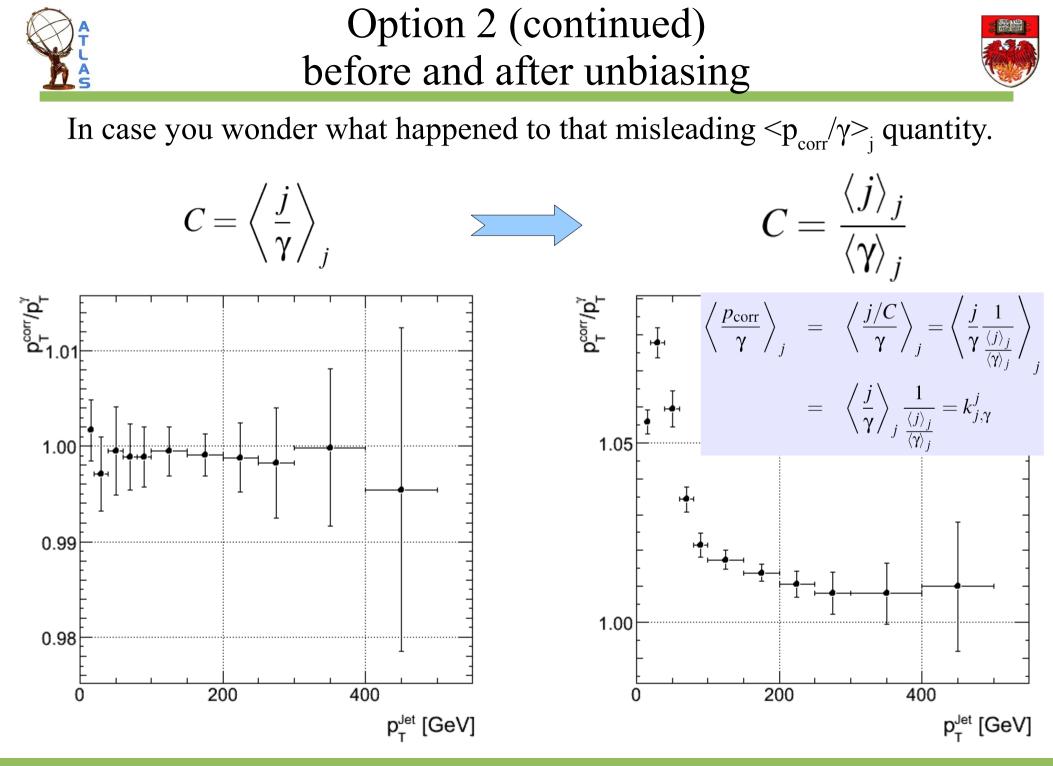
Correction factor:
$$C = \left\langle \frac{j}{\frac{\gamma+j}{2}} \right\rangle_{j}$$

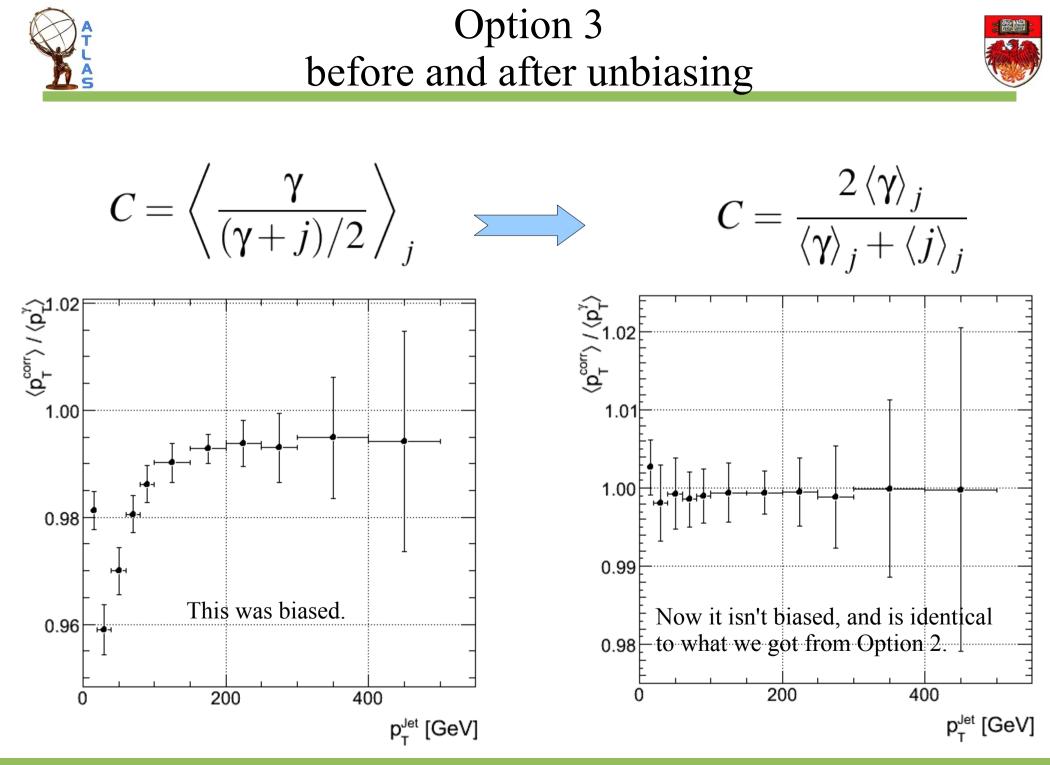
 $\langle p_{corr} \rangle_{j} = \left\langle j \frac{2-C}{C} \right\rangle_{j} = \langle j \rangle_{j} \frac{1 - \left\langle \frac{j}{\gamma+j} \right\rangle_{j}}{\left\langle \frac{j}{\gamma+j} \right\rangle_{j}} = \dots = \left\langle \gamma \rangle_{j} + \langle j \rangle_{j} \left(\frac{1}{k_{j,\gamma+j}^{j}} - 1 \right)$

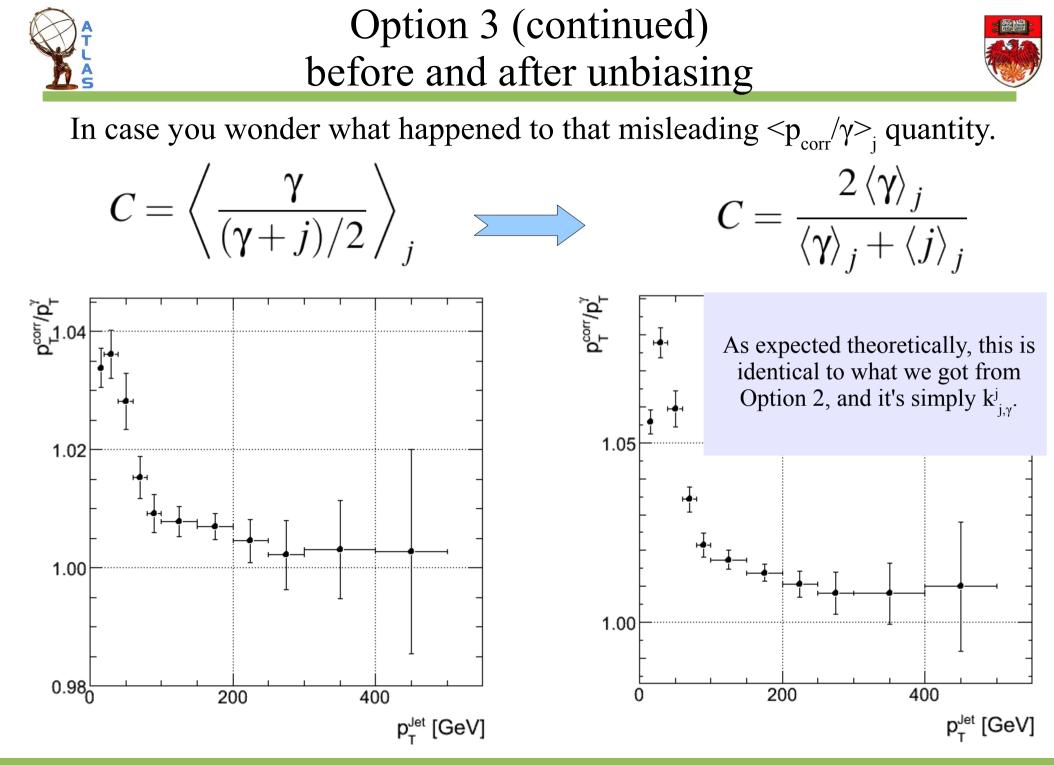












Option 4 before and after unbiasing

OK, you can guess... Option 4 is identical to Option 3. (These two were identical even before the unbiasing.)

Summary of bias discussion so far

• We derive a correction factor C for each bin of uncorrected jet p_T . We can define (at least) 4 different kinds of C. Each kind needs to be applied appropriately to take us from uncorrected p_T to $p_T^{\text{corr}} = p_T^{\gamma}$.

• We apply the correction in jets according to their uncorrected p_T . That's *the same* bin in which C was determined.

• Option 1 suffers small (but not 0) bias. The other 3 options suffer from significant bias, *due to correlation* between uncorrected jet p_T and γp_T .

• We can calculate the bias analytically, and correct for it. It turns out we don't even need to measure the correlation to do that. We simply use $C = \langle j \rangle_j / \langle \gamma \rangle_j$ instead of $\langle j/\gamma \rangle_j$, for Opt. 2, and analogous transformations for the other options.

• We showed that we remove the bias, namely we get $\langle p_T^{corr} \rangle_j = \langle p_T^{\gamma} \rangle_j$ in each uncorrected jet p_T bin.

• For a given option (i.e. correction definition) we may or may not see $\langle p_T^{corr} / p_T^{\gamma} \rangle_j = 1$. That is *irrelevant*. It doesn't tell us whether $\langle p_T^{corr} \rangle_j = \langle p_T^{\gamma} \rangle_j$, which is the definition of an unbiased estimator.

- I showed that I can construct an estimator (p_T^{corr}) which is unbiased. Notice I have always been using bins defined along the variable of uncorrected jet p_T (denoted by the $\langle \rangle_j$ subscripts all along). I calculated C in j-bins, I applied it jet-by-jet according to jet's p_T , and finally I compared $\langle p_T^{corr} \rangle_j$ to $\langle \gamma \rangle_j$.
- But someone else wants to see what happens if we compare $\langle p_T^{corr} \rangle_{\gamma}$ to $\langle \gamma \rangle_{\gamma}$ for various bins of γ (which is a short-hand for "reconstructed γ p_T ").
- Why does he want to see that? Because " γ is better measured". He further claims that if $\langle p_T^{corr} \rangle_{\gamma} \neq \langle \gamma \rangle_{\gamma}$ then we have trouble, because "there is bias".
- The frustrating thing is that, if $\langle p_T^{corr} \rangle_j = \langle \gamma \rangle_j$ then $\langle p_T^{corr} \rangle_{\gamma} \neq \langle \gamma \rangle_{\gamma}$. In general these two conditions are *mutually exclusive*: It is impossible to be unbiased in both j-bins and γ -bins simultaneously.

Why is $\langle p_T^{corr} \rangle_{\gamma} \neq \langle \gamma \rangle_{\gamma}$

• Take for example Option 1, that is easy and gives $< p_{T}^{\text{corr}} >_{i} / < \gamma >_{i} = k_{\gamma,i}^{j} = 1.$ $\langle p_{\rm corr} \rangle_{\gamma} = \langle j C_j \rangle_{\gamma} = \left\langle j \left\langle \frac{\gamma}{j} \right\rangle_j \right\rangle_{\gamma}$ This already becomes troublesome: We can't pull $\langle \gamma/j \rangle_{i}$ out uncorr. j p_T of the $<..>_{\gamma}$, because the γ -bin contains events from various γp_T j bins, hence various different correction factors $\langle \gamma/j \rangle_{i}$. But OK, let's imagine that we make a j-bin so huge that it contains all the events of the γ -bin. Then, we would have just one value for $\langle \gamma/j \rangle_i$ and we could pull it outside of the <..>_v: uncorr. j p_T $\langle p_{\rm corr} \rangle_{\gamma} = \left\langle \frac{\gamma}{j} \right\rangle_{i} \langle j \rangle_{\gamma} = k_{\gamma,j}^{j} \frac{\langle \gamma \rangle_{j}}{\langle j \rangle_{i}} \langle j \rangle_{\gamma} \simeq \frac{\langle \gamma \rangle_{j}}{\langle j \rangle_{i}} \langle j \rangle_{\gamma}$

• We would have to, not only apply, but also define the correction in γ-bins. Then we would have:

$$\langle p_{\rm corr} \rangle_{\gamma} = \left\langle j \left\langle \frac{\gamma}{j} \right\rangle_{\gamma} \right\rangle_{\gamma} = \left\langle \frac{\gamma}{j} \right\rangle_{\gamma} \langle j \rangle_{\gamma} = k_{\gamma,j}^{\gamma} \frac{\langle \gamma \rangle_{\gamma}}{\langle j \rangle_{\gamma}} \langle j \rangle_{\gamma} = k_{\gamma,j}^{\gamma} \langle \gamma \rangle_{\gamma}$$

We see there is this $k_{\gamma,j}^{\gamma}$ in the end, but we already know how to deal with it. We simply redefine the correction factor to be $\langle \gamma \rangle_{\gamma} / \langle j \rangle_{\gamma}$, and that gives $\langle p_{corr} \rangle_{\gamma} = \langle \gamma \rangle_{\gamma}$.

The problem now is that this correction factor *is not applicable*. It is defined as a function of γp_T , which isn't available when we want to apply this correction to events other than γ +jet.

My Question Is

- What do we imply when we say "unbiased estimator"? Do we mean in bins of γ (which is well-measured but not present in QCD events), or in bins of j (which is the observable parameter of the estimator)?
- In other words, why is it "a problem" to have $\langle p_T^{corr} \rangle_{\gamma} \neq \langle \gamma \rangle_{\gamma}$ if that is the natural, well-understood result of achieving $\langle p_T^{corr} \rangle_j = \langle \gamma \rangle_j$?
- If we agree that it's required to have $\langle p_T^{corr} \rangle_{\gamma} = \langle \gamma \rangle_{\gamma}$, then we will have to define the correction factor as a function of γ . How would we apply it then?
- Let's assume there is some robust way to apply the correction which is defined as a function of γ . If that correction guarantees that $\langle p_T^{corr} \rangle_{\gamma} = \langle \gamma \rangle_{\gamma}$, then at the same time it will be making $\langle p_T^{corr} \rangle_j \neq \langle \gamma \rangle_j$. Wouldn't that be a problem? It would mean that if I apply the correction to a group of QCD jets, I would get a wrong energy, which on average would differ from the pT of the (imaginary) balancing photon. In my mind, that goes against the essence of the correction.