# Correlation \& Bias in $\gamma$-jet balance 

 a talk for the mathematically inclinedGeorgios Choudalakis, Eric Feng<br>University of Chicago

weekly group meeting 2009/05/11

## Notation and Definitions

In derivations,

- $\gamma$ is a short-hand for reconstructed photon $\mathrm{p}_{\mathrm{T}}$,
$-j$ is a short-hand for uncorrected jet $\mathrm{p}_{\mathrm{T}}$,
- $p_{\text {corr }}$ is the jet $\mathrm{p}_{\mathrm{T}}$ after the correction. Since we try to adjust the jet to balance the photon, $p_{\text {corr }}$ is an estimator for photon's $p_{\mathrm{T}}$, which uses as observable the uncorrected jet $\mathrm{p}_{\mathrm{T}}$.
- The notation $<\ldots\rangle_{\mathrm{j}}$ signifies averaging over all events in a given $j$-bin.

```
Definition of bias:
```

$\hat{\theta}$ is a biased estimator of $\theta$ if $E(\hat{\theta}-\theta) \neq 0$.

$$
\begin{aligned}
& \text { Definition of } \mathrm{k}_{\mathrm{a}, \mathrm{~b}}^{\mathrm{b}} \text { : } \\
& \qquad\left\langle\frac{a}{b}\right\rangle_{j} \equiv k_{a, b}^{j} \frac{\langle a\rangle_{j}}{\langle b\rangle_{j}} \Rightarrow k_{a, b}^{j}=1+\operatorname{cov}\left(a, \frac{1}{b}\right)_{j} \frac{\langle b\rangle_{j}}{\langle a\rangle_{j}}
\end{aligned}
$$ the correction that takes us to the $\gamma \mathrm{p}_{\mathrm{T}}$

- Option 1: Correction factor: $C=\left\langle\frac{\gamma}{j}\right\rangle_{j}$

$$
p_{\text {corr }}=p_{T}^{j e t} C_{\mathrm{jet}} \mathrm{p}_{\mathrm{T}}=j C=j\left\langle\frac{\gamma}{j}\right\rangle_{j}
$$

- Option 2:

$$
\text { Correction factor: } C=\left\langle\frac{j}{\gamma}\right\rangle_{j} \quad p_{\text {corr }}=j \frac{1}{C}=j \frac{1}{\left\langle\frac{\gamma}{j}\right\rangle_{j}}
$$

- Option 3:

Correction factor: $C=\left\langle\frac{\gamma}{(\gamma+j) / 2}\right\rangle_{j} \quad p_{\text {corr }}=j \frac{C}{2-C}=j \frac{\left\langle\frac{\gamma}{j+\gamma}\right\rangle_{j}}{1-\left\langle\frac{\gamma}{j+\gamma}\right\rangle_{j}}$

- Option 4:

> on 4: Correction factor: $C=\left\langle\frac{j}{(\gamma+j) / 2}\right\rangle_{j} \quad p_{\text {corr }}=j \frac{2-C}{C}=j \frac{1-\left\langle\frac{j}{j+\gamma}\right\rangle_{j}}{\left\langle\frac{j}{j+\gamma}\right\rangle_{j}}$

## Correlations

## (using MC, but these are observable in data too)

$\mathrm{k}_{\mathrm{j}, \gamma}=\langle\mathrm{j} / \gamma\rangle_{\mathrm{j}} /\left(\langle\mathrm{j}\rangle_{\mathrm{j}} /\langle\gamma\rangle_{\mathrm{j}}\right)$ in each jet uncorrected $\mathrm{p}_{\mathrm{T}}$ bin. $\mathrm{k}_{\gamma, \mathrm{j}}=\langle\gamma / \mathrm{j}\rangle_{\mathrm{j}} /\left(\langle\gamma\rangle_{\mathrm{j}} /\langle\mathrm{j}\rangle_{\mathrm{j}}\right)$ in each jet uncorrected $\mathrm{p}_{\mathrm{T}}$ bin.



## Option 1

Correction factor: $C=\left\langle\frac{\gamma}{j}\right\rangle_{j}$
$\left\langle p_{\text {corr }}\right\rangle_{j}=\langle j C\rangle_{j}=\left\langle j\left\langle\frac{\gamma}{j}\right\rangle_{j}\right\rangle_{j}=\left\langle\frac{\gamma}{j}\right\rangle_{j}\langle j\rangle_{j}=k_{\gamma, j}^{j} \frac{\langle\gamma\rangle_{j}}{\langle j\rangle_{j}}\langle j\rangle_{j}=k_{\gamma, j}^{j}\langle\gamma\rangle_{j}$
If $\gamma$ and j are uncorrelated, then $\mathrm{k}=1$ and $\left\langle\mathrm{p}_{\text {corr }}\right\rangle_{\mathrm{j}}=\langle\gamma\rangle_{\mathrm{i}}$. In that case $\mathrm{p}_{\text {corr }}$ is an unbiased estimator of the $\gamma \mathrm{p}_{\mathrm{T}}$, since $\left\langle\mathrm{p}_{\text {corr }}-\gamma\right\rangle=\langle\gamma\rangle-\langle\gamma\rangle=0$.
But, correlation between $\gamma$ and $\mathrm{j}_{\mathrm{T}}$ causes the estimator to be biased: $\left\langle\mathrm{p}_{\text {corr }}>/<\gamma\right\rangle=\mathrm{k}_{\gamma, \mathrm{j}}$. $\mathrm{k}_{\gamma, \mathrm{j}} \approx 1$, so the bias is tiny, even if we do nothing to correct it.
But in general we can correct it by redefining C :
$C=\left\langle\frac{\gamma}{j}\right\rangle_{j} \rightarrow C^{\prime}=\frac{C}{k_{\gamma, j}^{j}}=\frac{\left\langle\frac{\gamma}{j}\right\rangle_{j}}{\frac{\left\langle\frac{\gamma}{j}\right\rangle_{j}}{\frac{\left\langle\gamma j_{j}\right.}{\langle j\rangle_{j}}}}=\frac{\langle\gamma\rangle_{j}}{\langle j\rangle_{j}}$
We'll come back to this later


## Option 1 (continued)

Before thinking carefully, I thought it would be enough to show $\left\langle\mathrm{p}_{\text {corr }} / \gamma\right\rangle$. I was hoping that if that were $=1$, then I would have shown my estimator is unbiased. WRONG! This is not the same as $\left\langle\mathrm{p}_{\text {corr }}\right\rangle /\langle\gamma\rangle$, which is the actual definition of bias.
$<\mathrm{p}_{\text {corr }} / \gamma>$ will be $\neq 1$, even if $\left\langle\mathrm{p}_{\text {corr }}>=\langle\gamma\rangle\right.$.
Since $\mathrm{k}_{\gamma, \mathrm{j}} \approx 1, \quad<\mathrm{p}_{\mathrm{corr}} / \gamma>\approx 1 \times \mathrm{k}_{\mathrm{j}, \gamma}$.


## Option 2

Correction factor: $C=\left\langle\frac{j}{\gamma}\right\rangle_{j}$

$$
\left\langle p_{\text {corr }}\right\rangle_{j}=\langle j / C\rangle_{j}=\left\langle\frac{j}{\left\langle\frac{j}{\gamma}\right\rangle_{j}}\right\rangle_{j}=\frac{\langle j\rangle_{j}}{\left\langle\frac{j}{\gamma}\right\rangle_{j}}=\frac{\langle j\rangle_{j}}{k_{j, \gamma}^{j}\left\langle\frac{j\rangle_{j}}{}\langle\gamma\rangle_{j}\right.}=\frac{\langle\gamma\rangle_{j}}{k_{j, \gamma}^{j}}
$$

There is bias.
Unlike Option 1, with Option 2 the bias is large.
Moral: Option 2 and Option 1 are not equivalent. Correlation beats intuition.

The bias could be corrected by a redefinition of C :
$C=\left\langle\frac{j}{\gamma}\right\rangle_{j} \rightarrow C^{\prime}=\frac{C}{k_{j, \gamma}^{j}}=\frac{\left\langle\frac{j}{\gamma}\right\rangle_{j}}{\frac{\left\langle\frac{j}{\gamma}\right\rangle_{j}}{\frac{\langle j\rangle_{j}}{\left\langle\gamma \gamma_{j}\right.}}}=\frac{\langle j\rangle_{j}}{\langle\gamma\rangle_{j}}$
We'll come back to this later


## Option 2 (continued)

$$
\begin{aligned}
\left\langle\frac{p_{\text {corr }}}{\gamma}\right\rangle_{j} & =\left\langle\frac{j / C}{\gamma}\right\rangle_{j}=\left\langle\frac{j}{\gamma} \frac{1}{\left\langle\frac{j}{\gamma}\right\rangle_{j}}\right\rangle_{j} \\
& =\left\langle\frac{j}{\gamma}\right\rangle_{j} \frac{1}{\left\langle\frac{j}{\gamma}\right\rangle_{j}}=1
\end{aligned}
$$

There is bias : $\left\langle\mathrm{p}_{\text {corr }}>/\langle\gamma\rangle=1 / \mathrm{k}_{\mathrm{j}, \gamma}\right.$. and yet in this plot it seems like there isn't. This plot is misleading.


## Option 3

Correction factor: $C=\left\langle\frac{\gamma}{\frac{\gamma+j}{2}}\right\rangle_{j}$
$\left\langle p_{\text {corr }}\right\rangle_{j}=\left\langle j \frac{C}{2-C}\right\rangle_{j}=\langle j\rangle_{j} \frac{\left\langle\frac{\gamma}{\gamma+j}\right\rangle_{j}}{1-\left\langle\frac{\gamma}{\gamma+j}\right\rangle_{j}}=\langle\gamma\rangle_{j} \frac{k_{\gamma, \gamma+j}^{j}\langle j\rangle_{j}}{\langle\gamma\rangle_{j}\left(1-k_{\gamma, \gamma+j}^{j}\right)+\langle j\rangle_{j}}$



## Option 4

Corracion facorer: $c=\left\langle\frac{j}{\frac{y_{1}}{2}}\right\rangle$,
$\left\langle p_{\text {corr }}\right\rangle_{j}=\left\langle j \frac{2-C}{C}\right\rangle_{j}=\langle j\rangle_{j} \frac{1-\left\langle\frac{j}{\gamma+j}\right\rangle_{j}}{\left\langle\frac{j}{\gamma+j}\right\rangle_{j}}=\cdots=\langle\gamma\rangle_{j}+\langle j\rangle_{j}\left(\frac{1}{k_{j, \gamma+j}^{j}}-1\right)$


Opt. 3 \& opt. 4 are equivalent
(unlike opt. 1 \& opt.2).


## Redefining C to remove bias

What people typically use

$$
C=\left\langle\frac{\gamma}{j}\right\rangle_{j}
$$

- Option 1:
- Option 2:

$$
C=\left\langle\frac{j}{\gamma}\right\rangle_{j}
$$

What people should use to not bias $\mathrm{p}_{\text {corr }}$.

$$
C=\frac{\langle\gamma\rangle_{j}}{\langle j\rangle_{j}} \begin{aligned}
& \text { Only in } \\
& \text { this case it } \\
& \text { makes no } \\
& \text { difference. }
\end{aligned}
$$

$$
\Longleftrightarrow C=\frac{\langle j\rangle_{j}}{\langle\gamma\rangle_{j}}
$$

- Option 3: $\quad C=\left\langle\frac{\gamma}{(\gamma+j) / 2}\right\rangle_{j}$

$$
C=\frac{2\langle\gamma\rangle_{j}}{\langle\gamma\rangle_{j}+\langle j\rangle_{j}}
$$

- Option 4: $\quad C=\left\langle\frac{j}{(\gamma+j) / 2}\right\rangle_{j}$

$$
C=\frac{2\langle j\rangle_{j}}{\langle\gamma\rangle_{j}+\langle j\rangle_{j}}
$$

## Option 2

## before and after unbiasing

$$
C=\left\langle\frac{j}{\gamma}\right\rangle_{j}
$$

$$
C=\frac{\langle j\rangle_{j}}{\langle\gamma\rangle_{j}}
$$




## Option 2 (continued) before and after unbiasing

In case you wonder what happened to that misleading $\left\langle\mathrm{p}_{\text {corr }} / \gamma\right\rangle_{\mathrm{j}}$ quantity.

$$
C=\left\langle\frac{j}{\gamma}\right\rangle_{j} \quad \Longleftrightarrow \quad C=\frac{\langle j\rangle_{j}}{\langle\gamma\rangle_{j}}
$$




## Option 3

## before and after unbiasing

$$
C=\left\langle\frac{\gamma}{(\gamma+j) / 2}\right\rangle_{j}
$$



$$
C=\frac{2\langle\gamma\rangle_{j}}{\langle\gamma\rangle_{j}+\langle j\rangle_{j}}
$$



## Option 3 (continued) before and after unbiasing

In case you wonder what happened to that misleading $\left\langle\mathrm{p}_{\text {corr }} / \gamma\right\rangle_{\mathrm{j}}$ quantity.

$$
C=\left\langle\frac{\gamma}{(\gamma+j) / 2}\right\rangle_{j}
$$



$$
C=\frac{2\langle\gamma\rangle_{j}}{\langle\gamma\rangle_{j}+\langle j\rangle_{j}}
$$



Option 4

## before and after unbiasing

OK, you can guess... Option 4 is identical to Option 3.
(These two were identical even before the unbiasing.)

## Summary of bias discussion so far

- We derive a correction factor C for each bin of uncorrected jet $\mathrm{p}_{\mathrm{T}}$. We can define (at least) 4 different kinds of C. Each kind needs to be applied appropriately to take us from uncorrected $\mathrm{p}_{\mathrm{T}}$ to $\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}=\mathrm{p}_{\mathrm{T}}{ }^{\gamma}$.
- We apply the correction in jets according to their uncorrected $\mathrm{p}_{\mathrm{T}}$. That's the same bin in which C was determined.
- Option 1 suffers small (but not 0 ) bias. The other 3 options suffer from significant bias, due to correlation between uncorrected jet $\mathrm{p}_{\mathrm{T}}$ and $\gamma \mathrm{p}_{\mathrm{T}}$.
- We can calculate the bias analytically, and correct for it. It turns out we don't even need to measure the correlation to do that. We simply use $\mathrm{C}=\langle\mathrm{j}\rangle_{\mathrm{j}} /\langle\gamma\rangle_{\mathrm{j}}$ instead of $\langle\mathrm{j} / \gamma\rangle_{\mathrm{j}}$, for Opt. 2, and analogous transformations for the other options.
- We showed that we remove the bias, namely we get $\left\langle p_{T}{ }^{\text {corr }}{ }_{j}=\left\langle p_{T}{ }^{r}\right\rangle_{j}\right.$ in each uncorrected jet $\mathrm{p}_{\mathrm{T}}$ bin.
- For a given option (i.e. correction definition) we may or may not see $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }} / \mathrm{p}_{\mathrm{T}}{ }^{\gamma}\right\rangle_{\mathrm{j}}=1$. That is irrelevant. It doesn't tell us whether $\left\langle\mathrm{p}_{\mathrm{T}}^{\text {corr }}{ }_{\mathrm{j}}=\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle_{\mathrm{j}}\right\rangle_{\text {, which }}$ is the definition of an unbiased estimator.


## Now things will get complicated

(in case they were not already)

- I showed that I can construct an estimator ( $\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}$ ) which is unbiased. Notice I have always been using bins defined along the variable of uncorrected jet $\mathrm{p}_{\mathrm{T}}$ (denoted by the $<>_{\mathrm{j}}$ subscripts all along). I calculated C in j-bins, I applied it jet-by-jet according to jet's $\mathrm{p}_{\mathrm{T}}$, and finally I compared $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\mathrm{j}}$ to $\langle\gamma\rangle_{\mathrm{j}}$.
- But someone else wants to see what happens if we compare $<\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}{ }_{\gamma}$ to $\langle\gamma\rangle \gamma$ for various bins of $\gamma$ (which is a short-hand for "reconstructed $\gamma$ $\mathrm{p}_{\mathrm{T}}{ }^{\prime \prime}$ ).
- Why does he want to see that? Because " $\gamma$ is better measured". He further claims that if $\left\langle\mathrm{p}_{\mathrm{T}}^{\text {corr }}\right\rangle_{\gamma} \neq\langle\gamma\rangle_{\gamma}$ then we have trouble, because "there is bias".
- The frustrating thing is that, if $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\mathrm{j}}=\langle\gamma\rangle_{\mathrm{j}}$ then $\left\langle\mathrm{p}_{\mathrm{T}}^{\text {corr }}{ }_{\gamma} \neq\langle\gamma\rangle_{\gamma}\right.$. In general these two conditions are mutually exclusive: It is impossible to be unbiased in both j -bins and $\gamma$-bins simultaneously.


## Why is $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\gamma} \neq\langle\gamma\rangle_{\gamma}$ ?

- Take for example Option 1, that is easy and gives

$$
\begin{aligned}
& \left\langle\mathrm{p}_{\mathrm{T}}^{\text {corr }}\right\rangle_{\mathrm{j}} /\langle\gamma\rangle_{\mathrm{j}}=\mathrm{k}_{\gamma, \mathrm{j}}^{\mathrm{j}}{ }_{\mathrm{j}}=1 \text {. } \\
& \left\langle p_{\text {corr }}\right\rangle_{\gamma}=\left\langle j C_{j}\right\rangle_{\gamma}=\left\langle j\left\langle\frac{\gamma}{j}\right\rangle_{j}\right\rangle_{\gamma}
\end{aligned}
$$

This already becomes troublesome: We can't pull $\left\langle\gamma / \mathrm{j}>{ }_{\mathrm{j}}\right.$ out of the $<..\rangle_{\gamma}$, because the $\gamma$-bin contains events from various j bins, hence various different correction factors $\langle\gamma / \mathrm{j}\rangle_{\mathrm{j}}$. But OK, let's imagine that we make a j-bin so huge that it contains all the events of the $\gamma$-bin. Then, we would have just one value for $\langle\gamma / \mathrm{j}\rangle_{\mathrm{j}}$ and we could pull it outside of the $<..\rangle_{\gamma}$ :
$\left\langle p_{\mathrm{corr}}\right\rangle_{\gamma}=\left\langle\frac{\gamma}{j}\right\rangle_{j}\langle j\rangle_{\gamma}=k_{\gamma, j}^{j} \frac{\langle\gamma\rangle_{j}}{\langle j\rangle_{j}}\langle j\rangle_{\gamma} \simeq \frac{\langle\gamma\rangle_{j}}{\langle j\rangle_{j}}\langle j\rangle_{\gamma}$


## What would it take to make $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\gamma}=\langle\gamma\rangle_{\gamma}$ ?

- We would have to, not only apply, but also define the correction in $\gamma$-bins. Then we would have:
$\left\langle p_{\text {corr }}\right\rangle_{\gamma}=\left\langle j\left\langle\frac{\gamma}{j}\right\rangle_{\gamma}\right\rangle_{\gamma}=\left\langle\frac{\gamma}{j}\right\rangle_{\gamma}\langle j\rangle_{\gamma}=k_{\gamma, j}^{\gamma} \frac{\langle\gamma\rangle_{\gamma}}{\langle j\rangle_{\gamma}}\langle j\rangle_{\gamma}=k_{\gamma, j}^{\gamma}\langle\gamma\rangle_{\gamma}$
We see there is this $\mathrm{k}_{\gamma \mathrm{j}}{ }^{\mathrm{j}}$ in the end, but we already know how to deal with it. We simply redefine the correction factor to be $\langle\gamma\rangle_{\gamma} \mid\langle j\rangle_{\gamma}$, and that gives $\left\langle\mathrm{p}_{\text {corr }}\right\rangle_{\gamma}=\langle\gamma\rangle$.

The problem now is that this correction factor is not applicable.
It is defined as a function of $\gamma \mathrm{p}_{\mathrm{T}}$, which isn't available when we want to apply this correction to events other than $\gamma+\mathrm{jet}$.

## My Question Is

- What do we imply when we say "unbiased estimator"? Do we mean in bins of $\gamma$ (which is well-measured but not present in QCD events), or in bins of j (which is the observable parameter of the estimator)?
- In other words, why is it "a problem" to have $\left\langle\mathfrak{p}_{\mathrm{T}}{ }^{\text {corr }}{ }_{\gamma} \neq\langle\gamma\rangle_{\gamma}\right.$ if that is the natural, well-understood result of achieving $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\mathrm{j}}=\langle\gamma\rangle{ }_{\mathrm{j}}$ ?
- If we agree that it's required to have $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\gamma}=\langle\gamma\rangle_{\gamma}$, then we will have to define the correction factor as a function of $\gamma$. How would we apply it then?
- Let's assume there is some robust way to apply the correction which is defined as a function of $\gamma$. If that correction guarantees that $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{\text {corr }}\right\rangle_{\gamma}=$ $\langle\gamma\rangle$, then at the same time it will be making $\left\langle p_{T}{ }^{\text {corr }}\right\rangle_{\mathrm{j}} \neq\langle\gamma\rangle$. Wouldn't that be a problem? It would mean that if I apply the correction to a group of QCD jets, I would get a wrong energy, which on average would differ from the pT of the (imaginary) balancing photon. In my mind, that goes against the essence of the correction.

